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Two-dimensional adaptive mesh generation
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SUMMARY

In this paper, a two-dimensional adaptive elliptic mesh generation system, derived from the Ryskin and
Leal (RL) orthogonal mesh generation system based on the orthogonal condition (orthogonality) and
the cell area equal-distribution principle (adaptivity), is presented. The proposed generation system takes
into account not only the mesh orthogonality and adaptivity but also the mesh smoothness by adopting
a method that the distortion functions is determined by both the scale factors and the averaged scale
factors of the constant mesh lines. Examples and application show that the proposed generation system
is effective and easy to use. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate and efficient analysis of computational fluid dynamics (CFD) demands high-quality
computational mesh. In general, mesh quality is evaluated by two standard academic criterions:
orthogonality and smoothness. For a particular CFD problem, however, even if a computational
mesh satisfies the above two criterions, a good solution may not be obtained if this mesh does
not consider the mesh density distribution (adaptivity). For example, in flow field the region with
large gradient variations, usually not a priori, desires more mesh lines. Mesh generation ought,
therefore, to consider not only the geometry, but also the physics of the solutions adaptively.
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In the last 20 years, many techniques and methodologies [1–10] on adaptive mesh generation
have been developed. Basically, these techniques can be grouped into three categories: h-methods
(local refinement or coarsening) [11]; m-methods (remeshing or regeneration); and r -methods
(redistribution or repositioning) [1–10]. The h-methods are straightforward and easy to understand,
but the bookkeeping and the data structures are very complicated, while the m-methods can produce
high-quality meshes but at a cost of heavy computational effort. As for the r -methods, the adaptive
mapping is usually fulfilled through some suitable generation equations. The main concern of this
paper is the r -method.

The r -methods are usually associated with the so-called equal-distribution principle, which was
first proposed and applied in one dimension. In the equal-distribution principle, a certain property
of the mesh is equidistributed based on some weighting function (or monitor function) which
represents the characteristic of the solutions. In CFD applications, it is found that the global error
can be reduced when the error is equidistributed, i.e. the error is the same for all the cells of the
mesh (called isotropic adaptation).

According to Cao et al. [4], the r -methods can be further divided into two groups: the location-
based methods [1–3, 5, 6, 8–10], which directly control the position of the mesh nodes, and the
velocity-based methods [4] and [7], which control the mesh velocity. The deformation method
proposed by Liao and Anderson [7] and the method of geometric conservation law (GLC) developed
by Cao et al. [4] are two typical representatives of the second group. In the first group, Winslow
[10] first developed an adaptive elliptic generation system by introducing a diffusion coefficient
which is related to solution gradients into a Laplace equation. Thompson et al. [9] proposed a
Poisson equation system with control functions (often referred as TTM system). Although it is
capable of adjusting grid spacing and direction, the TTM system is originally not for adaptive
mesh generation. Based on this Poisson equation system, Anderson [1] proposed a set of control
functions to control the arc length adaptively; and, Lee [6] derived, without approximations, a
set of control functions satisfying the area equal-distribution concept. Brackbill and Saltzman [3]
developed a variational adaptive generation system by minimizing the functional which combines
the mesh orthogonality, smoothness, and adaptivity (density distribution). However, the complexity
of this system makes it difficult to use. Knupp [5] also used the variational approach to derive
an adaptive elliptic generation system. Sun [8] used the area-preserving map and the classical
conformal map to control the cell area equal distribution and cell shape.

In this paper, a new mesh redistribution method (r -method) is developed. The elliptic adaptive
generation system is derived from the famous orthogonal mapping system proposed by Ryskin and
Leal [12] (often referred as RL system) according to the orthogonal condition (orthogonality) and
the cell area equal-distribution principle (adaptivity). By adopting a smoothing technique proposed
by Zhang et al. [13] that the distortion function is determined by both the scale factors and the
averaged scale factors of the constant mesh lines into the system, the proposed adaptive generation
system is capable of producing meshes considering not only mesh orthogonality and adaptivity but
also smoothness. Several examples and an application to a natural river will be used to demonstrate
the proposed adaptive generation system.

2. ELLIPTIC ADAPTIVE MESH GENERATION SYSTEMS

2.1. RL system

In 1983, Ryskin and Leal [12] proposed a well-known orthogonal mapping system. In this
system, the orthogonal mapping between the physical coordinates (xi (≡ x, y), i = 1, 2) and the
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computational coordinates (�i (≡ �, �), i = 1, 2) is described using the following covariant Laplace
equations:

�
��

(
f
�x
��

)
+ �

��

(
1

f

�x
��

)
= 0 (1a)

�
��

(
f
�y
��

)
+ �

��

(
1

f

�y
��

)
= 0 (1b)

In Equation (1), the distortion function f (also called aspect ratio) is defined as the ratio of the
scale factors in � and � directions (h� and h�):

f = h�

h�
=
(
x2� + y2�
x2� + y2�

)1/2

(2a)

h� = g1/211 , h� = g1/222 (2b)

where the metric tensor gi j is defined as follows:

g=
∣∣∣∣∣∣

(x2� + y2�) (x�x� + y�y�)

(x�x� + y�y�) (x2� + y2�)

∣∣∣∣∣∣ (3)

and x� = �x/�� and so forth.
Using the central difference scheme, Equation (1) can be discretized as follows:

Fi, j xi, j = fi+1/2, j xi+1, j + fi−1/2, j xi−1, j + 1

fi, j+1/2
xi, j+1 + 1

fi, j−1/2
xi, j−1 (4a)

Fi, j yi, j = fi+1/2, j yi+1, j + fi−1/2, j yi−1, j + 1

fi, j+1/2
yi, j+1 + 1

fi, j−1/2
yi, j−1 (4b)

where

Fi, j = fi+1/2, j + fi−1/2, j + 1

fi, j+1/2
+ 1

fi, j−1/2

The RL system is attractive due to its effectiveness on orthogonal mapping. The determina-
tion of the distortion function f in this system has been the main concern of many researchers
[13–15]. Unlike the TTM system proposed by Thompson et al. [9] which has been extended to
adaptive mesh generation [1, 6, 10], no literature has reported that the RL system can be used for
adaptive mesh generation. In the current study, an elliptic adaptive mesh generation system has
been derived from this system according to the orthogonal condition and the equal-distribution
principle.
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2.2. Orthogonality and adaptivity

In two dimensions, the Jacobin J (represents the cell area) of the transformation matrix is
defined by

J =
∣∣∣∣∣∣
x� y�

x� y�

∣∣∣∣∣∣ = x�y� − x�y� (5)

If the orthogonal condition is satisfied, that is,

g12 = g21 = x�x� + y�y� = 0 (6)

then one can obtain the Jacobin for orthogonality

J ∗ = h� · h� (7)

Let a ratio r be used to relate the two Jacobins defined by Equations (5) and (7), respectively,

J ∗ = r · J (r>0) (8)

Equations (2), (7) and (8) lead to the following relationships:

f = h2�
r J

(9a)

1

f
= h2�

r J
(9b)

Substituting Equation (9) into Equation (1) and rearranging it, one obtains:

− J�
J 2

h2�
r

x� − J�
J 2

h2�
r

x� + 1

J
· X = 0 (10a)

− J�
J 2

h2�
r

y� − J�
J 2

h2�
r

y� + 1

J
· Y = 0 (10b)

where

X = �
��

(
h2�
r
x�

)
+ �

��

(
h2�
r
x�

)
(11a)

Y = �
��

(
h2�
r
y�

)
+ �

��

(
h2�
r
y�

)
(11b)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1327–1350
DOI: 10.1002/fld



TWO-DIMENSIONAL ADAPTIVE MESH GENERATION 1331

From Equation (10), J� and J� can be written in terms of X and Y as follows:

J� = r

h2�
(X · y� − Y · x�) (12a)

J� = r

h2�
(Y · x� − X · y�) (12b)

In 1982, Brackbill and Saltzman [3] developed a variational adaptive system based on the
relationships among mesh orthogonality, smoothness and adaptivity. The following integral was
used to measure the adaptivity.

Iw =
∫
D
(w · J ) dA (13)

According to the equal-distribution principle, when this integral is minimized, w · J (w>0)
should have a uniform distribution:

w · J = const (14)

So that where the weighting function w is large, the cell area J should be small, and vice versa.
Differentiation of Equation (14) with respect to � and � yields:

�
��

(w · J ) = 0 ⇒ J� · w + J · w� = 0 (15a)

�
��

(w · J ) = 0 ⇒ J� · w + J · w� = 0 (15b)

Substitution of Equation (12) into Equation (15) leads to

w · r

h2�
(X · y� − Y · x�) + J · w� = 0 (16a)

w · r

h2�
(Y · x� − X · y�) + J · w� = 0 (16b)

After simple algebraic manipulations of Equation (16), X and Y can be written in terms of the
scale factors (h� and h�) and the weighting function w:

X = �
��

(
h2�
r
x�

)
+ �

��

(
h2�
r
x�

)
=−w�h2�

w · r x� − w�h2�
w · r x� (17a)

Y = �
��

(
h2�
r
y�

)
+ �

��

(
h2�
r
y�

)
=−w�h2�

w · r y� − w�h2�
w · r y� (17b)
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With the relationships described in Equation (9) and the chain rule of the derivatives,
Equation (17) can be rewritten as the following conservative form:

�
��

(
f · Jw · �x

��

)
+ �

��

(
1

f
· Jw · �x

��

)
= 0 (18a)

�
��
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)
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��

(
1

f
· Jw · �y

��

)
= 0 (18b)

Equation (18) can also be rewritten in a Poisson-like form with source terms:

�
��

(
f · �x

��

)
+ �

��

(
1

f
· �x
��

)
+ P = 0 (19a)

�
��

(
f · �y

��

)
+ �

��

(
1

f
· �y
��

)
+ Q = 0 (19b)

P =
(
J�
J

+ w�

w

)
f · x� +

(
J�
J

+ w�

w

)
1

f
· x� (19c)

Q =
(
J�
J

+ w�

w

)
f · y� +

(
J�
J

+ w�

w

)
1

f
· y� (19d)

where P and Q are called control functions for mesh adaptivity.
Equation (19) is an elliptic adaptive mesh generation system derived from the RL system

(Equation (1)) according to the orthogonal condition (orthogonality) described by Equation (6)
and the cell area equal-distribution principle (adaptivity) defined by Equation (14). The only
difference between this equation and the RL system lies in the source terms P and Q. In the RL
system, they are equal to zero, while in Equation (19) they are formulated based on the orthogonal
condition and the equal-distribution principle. An alternative simpler way to derive this equation
is to directly substitute Equation (15) into Equation (10).

Obviously, when Equation (14) is satisfied in the whole domain, Equation (18) will be reduced
to the original RL system, and the control functions in Equation (19) will become zero. However,
in case of uniform weighting function, a constant cell area is enforced in the whole domain, and
Equation (18) or (19) does not return to the RL system. Instead, the control functions P and Q
are reduced to

P = J�
J

f · x� + J�
J

1

f
· x� (20a)

Q = J�
J

f · y� + J�
J

1

f
· y� (20b)

Equation (20) proves that the proposed adaptive mesh generation system described by
Equation (19) strictly satisfies the cell area equal distribution. Lee [6] pointed out that the adaptive
systems developed by Winslow [10] and Anderson [1] only have approximate constraints on the
cell area or arc length distribution, because the control functions they proposed are identically
equal to zero with the uniform weighting function enforced.
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An immediate extension of Equation (18) is to introduce a user-specified constant parameter to
control the adaptivity. That is,

�
��

[
f · (Jw)�� · �x

��

]
+ �

��

[
1

f
· (Jw)�� · �x

��

]
= 0 (21a)
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��
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��

]
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��

[
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f
· (Jw)�� · �y

��

]
= 0 (21b)

where �a(�0) is used to control the intensity of the adaptivity.
And then one can obtain:

�
��

(
f · �x

��

)
+ �

��

(
1

f
· �x
��

)
+ P = 0 (22a)
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��

(
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)
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��
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f
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��
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+ Q = 0 (22b)

P = �a ·
[(

J�
J

+ w�

w

)
f · x� +

(
J�
J

+ w�

w

)
1

f
· x�

]
(22c)

Q = �a ·
[(

J�
J

+ w�

w

)
f · y� +

(
J�
J

+ w�

w

)
1

f
· y�

]
(22d)

Equation (22) is more flexible than Equations (18) and (19). With the adjustable parame-
ter �a, it can switch between the RL system (�a = 0) and the adaptive RL system (�a = 1).
Note that the equal-distribution principle still holds in Equation (22). In this paper,
Equation (22) will be referred as the proposed elliptic adaptive mesh generation system
hereafter.

2.3. Smoothness

Derived from the RL system, Equation (22) also inherits the disadvantage of this generation
system: it is lack of emphasizes on mesh smoothness. As pointed out in [13–15], the strong
local orthogonal condition may cause serious mesh distortion and overlapping in geometri-
cally complex domains, which eventually will affect mesh adaptivity. On the other hand, in
regions of large gradients, the mesh may become increasingly distorted or skewed because
of the equal-distribution principle (adaptivity), which may introduce new errors
into the solution [16]. Therefore, smoothing is also necessary in the adaptive mesh
generation.

To resolve the mesh distortion and overlapping problems in geometrically complex domains
with ‘weak constraint’ method, Zhang et al. [13] used the averaged scale factors as well as the
scale factors to evaluate the distortion functions. For one typical mesh node (i, j), their method
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can be described as follows:

fi, j = (h�) j · s� + (h�)i, j · (1 − s�)

(h�)i · s� + (h�)i, j · (1 − s�)
(23a)

(h�)i = 1

N j − 2

N j−1∑
j=2

(h�)i, j (23b)

(h�) j = 1

Ni − 2

Ni−1∑
i=2

(h�)i, j (23c)

where (h�)i and (h�) j are the global-averaged scale factors at � = i line and at � = j line, respec-
tively; Ni and N j are the total number of mesh lines in � and � directions; and, s� and s� are two
adjustable parameters within the range of [0, 1] to control the ratio between the averaged scale
factors and the local scale factors and further to control the local balance of mesh orthogonality
and smoothness.

The two parameters s� and s� can be either user specified or automatically adjusted according
to the local smoothness condition

(s�)i, j = |(h�)i, j − (h�)i |
(h�)i, j + (h�)i

(24a)

(s�)i, j = | (h�)i, j − (h�) j |
(h�)i, j + (h�) j

(24b)

In this study, this method is adopted to reduce the mesh distortion and improve the mesh
smoothness. With Equation (23), mesh smoothness is controlled by the empirical parameters s�
and s� which in turn influences mesh orthogonality and adaptivity. In general, the larger they are,
the produced mesh will be smoother but less orthogonal and less adaptive (less equally distributed
weighting function) and vice versa. Obviously, when s is equal to zero, Equation (23) will turn to
Equation (2)—the original definition of the distortion function.

2.4. Mesh quality

According to the truncation error analysis [17], the errors on the solutions brought by a computa-
tional mesh lie in two aspects: non-orthogonality and non-uniformity (non-smoothness). Thus, it
is well accepted that mesh quality is measured by two standard academic criterions: mesh orthog-
onality and smoothness. As for mesh adaptivity, it becomes more and more important in practical
problems due to its capability of improving the accuracy of solutions. Unfortunately, in practice it
is very difficult and nearly impossible to fully maintain these three criterions simultaneously in one
mesh. Even producing an optimal combination of them still remains a challenge. In the previous
studies on adaptive mesh generation, usually mesh adaptivity was the most concerned and the other
aspects of mesh quality, such as orthogonality and smoothness, were ignored. For example, in the
elliptic adaptive systems developed from the TTM system [1, 6, 10], only the mesh adaptivity was
considered; and, the variational system proposed by Brackbill and Saltzman [3] considers only a
user-specified combination of mesh orthogonality, smoothness and adaptivity which influence and
compromise each other. Compared with other methods, the proposed adaptive mesh generation
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system defined by Equation (22) considers both orthogonality and adaptivity simultaneously since
the orthogonal condition and the equal-distribution principle are enforced during the derivation,
which is one important and unique feature. This feature is attractive and crucial for the applica-
tion of the adaptive mesh generation, since the negative effects of mesh adaptivity on the overall
mesh quality is reduced greatly. However, as stated previously, a drawback lies in the possible
mesh distortion caused by the local orthogonal condition, which would influence the overall mesh
quality.

2.5. Weighting function

An adaptive algorithm consists of two main parts: the adaptive mesh generation system and the
weighting function. The success of the application of an adaptive algorithm to the real problems
depends largely on the weighing function which guides the relocation of mesh nodes [16]. Usu-
ally, the weighting function is selected to represent the characteristic of the solution. In [16], some
typical weighing functions based on the error estimators were reviewed. In [17], Thompson et
al. lists some weighting functions constructed according to the solution gradient. However, the
construction of the weighting function is beyond the focus of the current study, so the weight-
ing functions used in the examples and application of this paper will be directly given without
explanations.

2.6. Discretization

The discretization of Equation (22) at one typical mesh node (i, j) using the central difference
scheme is identical to that of Equation (1). One can easily obtain:

Fi, j xi, j = fi+1/2, j xi+1, j + fi−1/2, j xi−1, j + 1

fi, j+1/2
xi, j+1 + 1

fi, j−1/2
xi, j−1 + Pi, j (25a)

Fi, j yi, j = fi+1/2, j yi+1, j + fi−1/2, j yi−1, j + 1

fi, j+1/2
yi, j+1 + 1

fi, j−1/2
yi, j−1 + Qi, j (25b)

where

Fi, j = fi+1/2, j + fi−1/2, j + 1

fi, j+1/2
+ 1

fi, j−1/2

Note that the distortion functions in the first four terms of the right-hand side of Equation (25)
are evaluated using Equation (23), while in the control functions P and Q the distortion function
remains its original definition.

3. SOLUTION PROCESS

The highly non-linear Poisson equation system defined by Equation (19) is solved using an iterative
algorithm, which is simply listed as follows:

1. Define the boundaries of the domain and use an algebraic method to generate an initial mesh.
2. Calculate the weighting functions w.
3. Specify the adaptive parameter �a.
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4. Calculate the distortion function f from Equation (23).
5. Calculate the control functions P and Q using the most recent solution from Equations (22c)

and (22d).
6. Solve Equation (25) with fixed f obtained from step 3.
7. Update the mesh and check if the convergence condition is satisfied. If not, repeat steps from

2 through 6.

Two convergence criterions are used and the satisfaction of either one will stop the computation.
The first one is the maximum difference between the grid coordinates in consecutive steps and the
second one is the maximum relative difference of the distortion function f between consecutive
iterations. They are defined as follows:

max

(√
(xni, j − xn−1

i, j )2 + (yni, j − yn−1
i, j )2

)
<10−6 (26)

max

(
f n − f n−1

f n

)
<10−6 (27)

where n is the iteration number.

4. BOUNDARY CONDITIONS

Two types of boundary conditions are available: the Dirichlet boundary condition with the fixed
specified nodal distribution along the boundaries, and the Dirichlet–Neumann boundary condition
(also called sliding boundary condition) which allows the mesh nodes slide along the boundaries
(Dirichlet) to satisfy the Neumann condition.

In the current study, both boundary conditions will be used to test the proposed method.

5. EXAMPLES

A typical location-based adaptive method, Lee’s method [6], is selected to compare with the current
method, since this method is a good representative of the group of adaptive mesh generation
systems derived from TTM system [9]. The adaptive generation system proposed by Lee [6] can
be described as follows:

g22
�2x

��2
− 2g12

�2x
����

+ g11
�2x
��2

+ g

(
Px

�x
��

+ Qx
�x
��

)
= 0 (28a)

g22
�2y

��2
− 2g12

�2y
����

+ g11
�2y
��2

+ g

(
Py

�y
��

+ Qy
�y
��

)
= 0 (28b)

where P and Q are control functions in the form of

(Px , Py) = 1

g

[
g22

w�

w
− g12

w�

w
− (x, y)�(x, y)�� + (x, y)�(x, y)��

]
(29a)

(Qx , Qy) = 1

g

[
g11

w�

w
− g12

w�

w
− (x, y)�(x, y)�� + (x, y)�(x, y)��

]
(29b)
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where the subscripts ‘�’ and ‘��’ denote the first and second derivatives with respect to �, respec-
tively, and so on.

Three benchmarking examples used by Cao et al. [4] in a rectangular domain with both width
and height equal to 1 are selected to illustrate and compare the current method with Lee’s method.
The weighting functions for these three examples are defined as follows and the distribution of
these three weighting functions is shown in Figure 1.

• Example A (time independent):

w(x, y) = 1 + 10 exp{[−50(y − 0.5 − 0.25 sin(2�x))]2} (30)

• Example B (time independent):

w(x, y)= 1 + 10 exp[−50 | (x − 0.5)2 + (y − 0.5)2 − ( 14 )
2 |] (31)

• Example C (time dependent):

w(x, y, t) = 1 + 10 exp{[−50 | (x − 0.5 − 0.25 cos(2�t))2

+(y − 0.5 − 0.25 sin(2�t))2 − ( 1
10 )

2 |]} (32)

Since the goal of the adaptive mesh generation is to produce non-uniform meshes with controlled
density distribution, in this study the mesh quality is characterized only by mesh orthogonality and
adaptivity. The mesh orthogonality is evaluated quantitatively by maximum deviation orthogonality
(MDO) and averaged deviation from orthogonality (ADO), which are defined as follows:

MDO= max (�i, j ) (33a)

ADO= 1

(Ni − 2)

1

(N j − 2)

Ni−1∑
2

N j−1∑
2

max (�i, j ) (33b)

where Ni and N j are the maximum number of mesh lines in � and � directions respectively; and
� is defined as

�i, j =
∣∣∣∣∣arccos

(
g12
h�h�

)
i, j

− 90

∣∣∣∣∣ (34)

The normalized cell-distributed weighting function EP is used to quantitatively measure the
mesh adaptivity. The closer to 1 it is, the better adaptivity the mesh will have.

EP=ED/ED (35a)

ED= J · w (35b)

ED= 1

(Ni − 2)

1

(N j − 2)

Ni−1∑
2

N j−1∑
2

(ED) (35c)

where EP can measure how close to the equal distribution the weighting function is and ED is the
averaged cell-distributed weighting function.
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(A) (B)

(C) (D)

(E) (F)

Figure 1. Distribution of weighting functions: (A) example A; (B) example B; (C) example C (t = 0);
(D) example C (t = 0.25); (E) example C (t = 0.5); and (F) example C (t = 0.75).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1327–1350
DOI: 10.1002/fld



TWO-DIMENSIONAL ADAPTIVE MESH GENERATION 1339

(A1) (A2)

(A3) (A4)

(A5) (A6)

(A7) (A8)

Figure 2. Adaptive meshes for example A: (A1) current method (Dirichlet B.C.) with �a = 1
and s� = s� = 0; (A2) current method (sliding B.C.) with �a = 1 and s� = s� = 0; (A3) current
method (Dirichlet B.C.) with �a = 1.0; (A4) current method (sliding B.C.) with �a = 1.0;
(A5) current method (Dirichlet B.C.) with �a = 2.0; (A6) current method (sliding B.C.) with

�a = 2.0;(A7) Lee’s method (Dirichlet B.C.); and (A8) Lee’s method (sliding B.C.).
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(B1) (B2)

(B3) (B4)

(B5) (B6)

(B7) (B8)

Figure 3. Adaptive meshes for example B: (B1) current method (Dirichlet B.C.) with �a = 1
and s� = s� = 0; (B2) current method (sliding B.C.) with �a = 1 and s� = s� = 0; (B3) current
method (Dirichlet B.C.) with �a = 1.0; (B4) current method (sliding B.C.) with �a = 1.0;
(B5) current method (Dirichlet B.C.) with �a = 2.0; (B6) current method (sliding B.C.)
with �a = 2.0; (B7) Lee’s method (Dirichlet B.C.); and (B8) Lee’s method (sliding B.C.).
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Table I. Mesh evaluation for example A.

Example Case Size EPmin EPmax ADO MDO �a s�, s�

A A1 40× 40 0.418 1.851 12.34 62.9 1.0 0
A2 40× 40 0.664 1.546 7.9 52.3 1.0 0
A3 40× 40 0.363 1.752 17.66 44.36 1.0 Equation (24)
A4 40× 40 0.421 1.642 15.06 41.8 1.0 Equation (24)
A5 40× 40 0.45 1.561 23.7 55.68 2.0 Equation (24)
A6 40× 40 0.511 1.432 21.0 53.0 2.0 Equation (24)
A7 40× 40 0.420 2.086 42.3 77.8 — —
A8 40× 40 0.534 2.122 41.1 79.0 — —

Table II. Mesh evaluation for example B.

Example Case Size EPmin EPmax ADO MDO �a s�, s�

B B1 40× 40 0.595 1.773 11.59 32.62 1.0 0
B2 40× 40 0.678 1.668 7.99 25.72 1.0 0
B3 40× 40 0.599 1.743 13.37 29.7 1.0 Equation (24)
B4 40× 40 0.675 1.721 10.32 28.63 1.0 Equation (24)
B5 40× 40 0.695 1.449 16.79 38.89 2.0 Equation (24)
B6 40× 40 0.758 1.428 13.79 36.77 2.0 Equation (24)
B7 40× 40 0.451 1.584 28.15 60.76 — —
B8 40× 40 0.469 1.583 27.95 60.73 — —
B9 40× 40 0.596 1.781 11.82 32.12 1.0 0
B10 40× 40 0.662 1.734 8.02 25.54 1.0 0

For all cases except B7 and B8, a uniform initial meshes (40× 40) with uniform nodal dis-
tribution along the four boundaries is generated by the algebraic method, namely, top boundary,
bottom boundary, left boundary and right boundary.

5.1. Time-independent examples

The adaptive meshes for examples A and B are illustrated in Figures 2 and 3, respectively. And,
the quality of the final meshes with different configurations is summarized in Tables I and II.

In example A, both methods successfully produced high mesh density in regions with high
weighting values. Compared to Lee’s method (cases A7 and A8), the current method (cases A1–
A6) has better performances in both mesh orthogonality and adaptivity. Although there is little
difference in mesh adaptivity between two methods, the current method produced much more
orthogonal meshes. For current method, skewed meshes, which cause discontinuous transition of
the mesh density distribution, exist in cases A1 and A2 due to the local strong orthogonal condition
[13–15]. As for cases A3–A6, with consideration of mesh smoothness (s�, s�>0), both mesh
smoothness and the transition have been significantly improved at little cost of mesh orthogonality.
In cases A5–A6, the mesh adaptivity is emphasized (�a = 2.0), and the mesh adaptivity is further
improved with degenerated mesh orthogonality. Among all cases, case A4 with consideration
of mesh smoothness and the application of the sliding boundary condition has the best overall
quality.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1327–1350
DOI: 10.1002/fld



1342 Y. ZHANG, Y. JIA, AND S. S. Y. WANG

(C1) (C2) (C3) (C4)

(C5) (C6) (C7) (C8)

(C9) (C10) (C11) (C12)

Figure 4. Adaptive meshes for example C using Dirichlet boundary condition. For C1–C4,
�a = 1 and s� = s� = 0; and, for C5–C8, �a = 2 and s�, s�>0: (C1) current method (t = 0); (C2)
current method (t = 0.25); (C3) current method (t = 0.5); (C4) current method (t = 0.75);
(C5) current method (t = 0); (C6) current method (t = 0.25); (C7) current method (t = 0.5);
(C8) current method (t = 0.75); (C9) Lee’s method (t = 0); (C10) Lee’s method (t = 0.25);

(C11) Lee’s method (t = 0.5); and (C12) Lee’s method (t = 0.75).

In example B, similarly, both methods have close performances on mesh adaptivity, and the
current method (cases B1–B6) is much better in mesh orthogonality than Lee’s method (cases
B7 and B8). For current method, compared to cases B1 and B2, the overall mesh quality in
both orthogonality and adaptivity have been improved in cases B3–B6 with considering mesh
smoothness. With larger �a, cases B5 and B6 produced more adaptive meshes than cases B3–B4.

In example B, the distribution of the weighting function in the whole domain is symmetric.
Compared to example A with asymmetric distribution of weighting function, only slight transition
problem exists in cases B1 and B2.

In both examples and for both methods, the sliding boundary condition produced meshes with
better quality than the Dirichlet boundary condition.
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(C13) (C14)

(C15) (C16)

(C17) (C18)

(C19) (C20)

Figure 5. Adaptive meshes for example C using sliding boundary condition. For C13–C20, �a = 1
and s� = s� = 0: (C13) current method (t = 0); (C14) current method (t = 0.25); (C15) current method
(t = 0.5); (C16) current method (t = 0.75); (C17) Lee’s method (t = 0); (C18) Lee’s method (t = 0.25);

(C19) Lee’s method (t = 0.5); and (C20) Lee’s method (t = 0.75).
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Table III. Mesh evaluation for example C.

Example Case Size EPmin EPmax ADO MDO �a s�, s�

C C1–C4 40× 40 0.649 1.449 7.0 41.88 1.0 0
C5–C8 40× 40 0.713 1.670 13.82 39.14 2.0 Equation (24)
C9–C12 40× 40 0.539 1.699 24.69 63.19 — —
C13–C16 40× 40 0.821 1.201 3.12 12.91 1.0 0
C17–C20 40× 40 0.567 1.482 22.48 63.0 — —

5.2. Time-dependent example

Example C is time dependent, and the solution process described previously is carried out along
a time axis. In the computation, for both methods, the time step is set to 0.01 and the total
time is 1. Figures 4 and 5 display the adaptive meshes for both methods at four time instances
(t = 0, 0.25, 0.5 and 0.75) using different boundary conditions, and Table III lists the evaluation
report of the final meshes.

For the Dirichlet boundary condition, the EP value varies from 0.651 to 1.848 during the
computation for the current method, and from 0.530 to 1.700 for Lee’s method; while for the
sliding boundary condition, the EP value lies in a range of 0.749–1.448 for current method and
0.540 to 1.512 for Lee’s method.

For both boundary conditions, not surprisingly, cases (C1–C8, and C13–C16) using the current
method which considers mesh orthogonality and adaptivity simultaneously performed much better
in both mesh orthogonality and adaptivity than their counterparts (C9–C12, and C17–C20) using
Lee’s method, although slightly skewed meshes were observed in cases C1–C4 with the Dirichlet
boundary conditions. Compared to cases C1–C4, cases C5–C8 considered mesh smoothness and
had more emphasis on mesh adaptivity. The best overall quality meshes were obtained by the
current method with the sliding boundary conditions.

In this example, the distribution of weighting function is globally asymmetric but locally sym-
metric, and little discontinuous transition of mesh density distribution occurred in cases C1–C4
with the Dirichlet boundary conditions.

5.3. Sensitivity analysis

Example B is also used to study the effects of parameter �a on mesh orthogonality and adaptivity.
Different values of �a ranging from 1 to 2.2 are used to generate the adaptive meshes using the
current method.

Figure 7 illustrates the relationships between �a and the indicators of mesh quality (EPmin,EPmax,
ADO and MDO) with the Dirichlet boundary condition. Basically, the parameter �a has positive
influences on mesh adaptivity. As shown in Figure 7, with �a increasing, EPmin increases and
EPmax decreases (more adaptivity). As for mesh orthogonality, with �a increasing, both ADO and
MDO increases (less orthogonality).

According to the numerical tests, larger value of the adaptivity parameter �a may cause stability
problems. Therefore, it must be bounded. The range from 1.0 to 2.0 is recommended for most
cases. For complex domains, the range needs to be further narrowed.

To test if the current method is sensitive to the initial condition, two adaptive meshes for example
B were generated using the final mesh of case A1 as the initial condition. The resulting meshes
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(B10)(B9)

Figure 6. Adaptive meshes for example B using Case A1 as initial mesh: (B9) current method
(Dirichlet B.C.) with �a = 0 and (B10) current method (sliding B.C.) with �a = 0.

D
O E
P

EPMin

ADO

EPMaxMDO

Figure 7. Effects of �a on mesh orthogonality and adaptivity.

(cases B9 and B10) are shown in Figures 6 and their evaluations can be found in Table II. Both
cases have very close performances to their counterparts (cases B1 and B2), which indicates that
the current method is stable and not sensitive to the initial conditions.

6. APPLICATION

To further challenge the proposed method, a natural curved channel (domain D) is selected and its
layout is illustrated in Figure 8. As shown in Figure 8 (A), the main channel is narrow and deep
compared to the floodplains most of which will be dry in the dry season. With much less concerns,
it is desirable to put less meshes on the floodplains. Thus, a depth adaptive mesh is obviously
more suitable than an orthogonal non-adaptive mesh for this domain. The weighting function is
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(A) (B)

Figure 8. Domain D: (A) topography and (B) algebraic mesh.

described as follows:

wi, j = 1.0 + (Zmax − Zi, j ) +
√

(Z2
� + Z2

�)i, j (36)

where Z and Zmax are nodal bed elevation and the maximum bed elevation.
Figure 9 displays the non-adaptive mesh (case D1) generated by the original RL system and the

adaptive mesh (case D2) produced by current method. Table IV summarizes their evaluation. Both
meshes have close evaluations on mesh orthogonality, although case D1 is slightly better. The EP
value of case D2 is in the reasonable range, and more meshes are produced in the main channel.

A steady flow simulation is performed on both meshes. The water surface elevation of 34.3 m
is imposed at the downstream end, while a discharge of 350.0 m3/s is imposed on the upstream
end of the channel. Figure 10 shows the velocity fields for both meshes. As can be seen, the
simulation results based on the adaptive mesh is much better than the non-adaptive mesh, although
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(D1) (D2)

Figure 9. Meshes for domain D: (D1) non-adaptive mesh and (D2) adaptive mesh with �a = 1.0.

Table IV. Mesh evaluation for domain D.

Domain Case Size EPmin EPmax ADO MDO �a s�, s�

D D1 30× 150 0.058 6.714 7.18 43.67 — —
D2 30× 150 0.374 1.996 13.5 50.71 1.0 Equation (24)

the latter is better in both orthogonality and smoothness. The reason lies in the fact that, in the
non-adaptive mesh, few mesh lines are put in the main channel (wet part), which influences the
accuracy significantly. In case D1 (non-adaptive mesh), only 20.8% of mesh nodes are wet, while
in case D2 (adaptive mesh), 41.4% of mesh nodes are wet.
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(D1) (D2)

Figure 10. Velocity fields in domain D: (D1) non-adaptive mesh and (D2) adaptive mesh.

7. CONCLUSIONS

Mesh quality has significant influence on the solutions. In addition to mesh orthogonality and
smoothness, the adaptive mesh density control is required in many cases of CFD analysis. In
this paper, a 2D elliptic adaptive mesh generation system has been developed from a well-known
orthogonal mapping system—RL system proposed by Ryskin and Leal [12].

Without any assumptions in the derivation, this adaptive generation system satisfies the orthogo-
nal condition and the equal-distribution principle strictly. A unique feature of this system differing
from other adaptive systems is that it is capable of maintaining mesh orthogonality and adaptivity
simultaneously in a mesh. With introducing the averaged scale factors to evaluate the distortion
function [13], it can take into account of mesh smoothness as well.

Several academic examples are selected to test and illustrate the proposed system. For all cases,
compared to other method, this system has better overall performances in mesh orthogonality,
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adaptivity and smoothness, although skewed meshes exist in some cases with Dirichlet boundary
conditions if no mesh smoothness is considered (s� = s� = 0). The discontinuous transition of the
mesh density distribution was found in domains with locally asymmetric distribution of weight-
ing function, which is caused by the local strong orthogonal condition. With considering mesh
smoothness, both the transition and mesh smoothness were improved greatly at little sacrifice of
orthogonality and smoothness. Two types of boundary conditions, namely, the Dirichlet boundary
condition and the sliding boundary condition, were also compared. It is concluded that the sliding
boundary condition is more suitable for adaptive mesh generation.

According to the sensitivity analysis, in this system, the adaptivity parameter �a which controls
the intensity of mesh adaptivity generally has negative effects on mesh orthogonality. That is, the
larger �a is (more adaptivity), the less orthogonal the resulting mesh will be. It is also found that
the proposed system is stable and not sensitive to the initial conditions.

The proposed system is applied to the depth adaptive mesh generation in a natural channel.
Compared with the non-adaptive mesh which satisfies mesh orthogonality and smoothness, the
adaptive mesh produced much better simulation results.
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